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Spatially localized unstable periodic orbits of a high-dimensional chaotic system

Scott M. Zoldi* ,† and Henry S. Greenside*
Department of Physics, Duke University, Durham, North Carolina 27708-0305

~Received 14 April 1997!

Using an innovative damped-Newton method, we report the calculation and analysis of many distinct
unstable periodic orbits~UPOs! for a high-fractal-dimension (D58.8) extensively chaotic solution of a partial
differential equation. A majority of the UPOs turn out to be spatially localized in that time dependence occurs
only on portions of the spatial domain. With a escape-time weighting of 127 UPOs, the attractor’s fractal
dimension can be estimated with a relative error of 2%. Statistical errors are found to decrease as 1/AN as the
numberN of known UPOs increases.@S1063-651X~98!50703-9#

PACS number~s!: 05.45.1b, 05.70.Ln, 47.27.Cn, 82.40.Bj
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Over the last ten years, there has been a blossomin
research concerning the set of unstable periodic or
~UPOs! associated with a chaotic attractor in phase spa
Researchers have shown that knowledge of the short-pe
UPOs can often be used to estimate dynamical invariant
a chaotic attractor such as its fractal dimension a
Lyapunov exponents@1# and to improve forecasting of tim
series generated by the attractor@2#. In some cases, th
shorter-period UPOs can be extracted from time series
these can then be used to characterize experimental c
@3#. For engineering applications in which chaos is unde
able, researchers have discovered algorithms that can co
chaotic to periodic behavior by stabilizing a given UP
through weak parameter modulations@4#.

These many achievements are based on mathematica
sumptions that restrict their applicability to low-dimension
systems. Theory that expresses the natural measure o
attractor in terms of the set of UPOs requires the assump
of hyperbolicity@5#, which fails for most dynamical system
because of tangencies of stable and unstable manifolds@1#
and because of unstable dimension variability@6#. The pow-
erful cycle expansion method that expresses average
terms of a moderate number of UPOs@1# is practical only if
a symbolic dynamics~unique labeling of each UPO@1#! is
explicitly known and it is widely believed that most dynam
cal systems lack a symbolic dynamics. Even if a system
hyperbolic and has an explicit symbolic dynamics, it is s
nontrivial to calculate a relatively complete set of UPO
from specified equations or from measured time series
apply a cycle expansion. In the absence of hyperbolicity
of a symbolic dynamics, it is not known how to weight
given set of UPOs so as to approximate a given statist
average in a high-dimensional regime.

A consequence of these restrictions is that extremely l
is known about the relation of UPOs to high-dimension
chaotic attractors such as those associated with larg
strongly driven nonequilibrium systems@7,8#. An improved
understanding of the spatial structure of UPOs, of the dis
bution of their periodsT, and of their stabilities will also

*Also at Center for Nonlinear and Complex Systems, Duke U
versity, Durham, NC 27708.

†Electronic address: zoldi@phy.duke.edu
571063-651X/98/57~3!/2511~4!/$15.00
of
ts
e.
od
of
d

nd
os

r-
ert

as-
l
an
n

in

is
l

to
d

al

e
l
or

i-

likely aid the development of high-dimensional spatiotemp
ral control algorithms by suggesting the number and locat
of control points for a particular UPO and for a particul
system parameter that is varied.

In this Rapid Commuication, we take a significant st
towards understanding the relation of the set of UPOs
high-dimensional spatiotemporal chaos by reporting the
culation and analysis of many~over 100! distinct UPOs for a
high-fractal-dimension (D58.8) driven-dissipative partia
differential equation~PDE! @9#. This calculation represent
three advances. One is numerical, that a simple modifica
of a Newton algorithm by the addition of damping@10#
greatly increases the likelihood of convergence and so ma
practical the computation of many UPOs. The seco
achievement is several discoveries in nonequilibrium ph
ics, e.g., that most of the UPOs turn out to be spatially
calized as discussed below and that about 100 UPOs
already sufficient to estimate the fractal dimension of a hi
dimensional chaos to two significant digits. The thi
achievement is an empirical discovery, that a weighting
UPOs based on escape times can approximate several s
tical averages accurately. These results suggest that a s
tical theory of high-dimensional attractors in terms of UP
might be possible even in the absence of hyperbolicity or
a symbolic dynamics.

Our calculations were carried out for one of the simpl
models of spatiotemporal chaos, the one-dimensio
Kuramoto-Sivashinsky~KS! equation@11#

] tu52]x
2u2]x

4u2u]xu, xP@0,L#, ~1!

where the fieldu(t,x) exists on an interval of lengthL and
satisfies rigid boundary conditionsu5]xu50. For system
sizesL>50, Manneville has shown that typical initial con
ditions evolve towards a chaotic attractor that is extensive
that the Lyapunov fractal dimensionD increases linearly
with L @11#. In our calculations, we chose a fixed leng
L550 and spatial resolutionDx50.5 for which the
Lyapunov fractal dimension wasD58.8 and there were 4
positive, 1 zero, and 94 negative Lyapunov exponents@12#.
The system sizeL550 was just large enough to be in th
extensively chaotic regime and yet small enough that
numerical calculations were manageable with available
sources and algorithms.

-
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The problem of calculating UPOs of Eq.~1! can be posed
as a set of nonlinear equations which specify that an o
U(t) starting at a certain pointU0 in the numerical phase
space will close on itself after a periodT @13#. By introduc-
ing a single vector of unknownsX5(T,U0), these nonlinear
equations can be written abstractly as05F(X)5U(T)2U0
where the specific form of the vector functionF~X! will de-
pend on how Eq.~1! is discretized~we used second-orde
finite differences to approximate the spatial derivatives o
uniform mesh with spacingDx!. A standard way to solve
these nonlinear equations is then a Newton method@13,10#,
in which a current estimateX of the unknowns is improved
by adding a correction dX52J21(X)F(X), where
J5]F/]X is the Jacobian matrix. The iterationX←X1dX
is repeated until the magnitudes of the correctionidXi and
of the residualiF(X)i are sufficiently small@14#.

For high-dimensional Newton methods, it is essential
have a good starting guess since Newton methods are g
anteed to converge only locally and often diverge for init
values that are not close to a solution. We failed to find go
initial guessesX05(T0,U0) by searching for approximat
recurrences@2,3# of chaotic time seriesUi5U( iDt) in the
99-dimensional numerical phase space of Eq.~1!. For ex-
ample, forL550, no approximate recurrences were fou
for a large integration time of 108 time units within a ball of
rather large radius 0.1,iU(T1t)2U(t)i`,0.1 @15#.

Since no approximate recurrence was close to a UPO
Eq. ~1!, we then tried to choose an initial guessX0 by as-
signing a positive random numberT for the period and
choosing an initial vectorU0 from a point on the numerically
calculated chaotic attractor. This also failed to converge
lessdampingwas introduced@10#, in which only a fraction
aP(0,1# of a Newton correction was added to update
unknowns,X←X1adX. Damping is a widely used strateg
in many numerical problems, in which convergence o
Newton method is improved by solving a related sequenc
one-dimensional minimization problems@10#. Using a par-
ticular damping algorithm known as the Armijo rule@10#, we
obtained convergence@14# for 5% of all initial guesses tried
A deeper insight into what determines this success rat
unlikely at this time, since it would require an understand
of the basins of attraction associated with the hig
dimensional Newton map of the discretized KS equation

We now discuss the properties of the UPOs calcula
with the above numerical methods. Using the damp
Newton method discussed above, 262 UPOs were found
of 5000 initial guessesX05(T0 ,U0) of which 127 UPOs
were distinct@16#. UPOs with periods shorter than 8 we
not found while the Armijo-Newton algorithm failed to con
verge for UPOs with periods larger than 42. As shown qu
tatively in Fig. 1 and more quantitatively in Fig. 2, a surpr
ing feature of the calculated UPOs is that a majority
spatially localized in that the time variation is substant
only in isolated portions of the domain. The spatially loc
ized dynamics of these UPOs suggests a mechanism
which a large chaotic system becomes extensive, actin
statistically independent subsystems@8#. The majority of the
UPOs are not flip-symmetric but occur in pairs that prese
the inversion symmetry of the attractor. The correspond
mean and variance patterns@16# are given in Figs. 2~a!–2~f!.
In Figs. 2~a!, 2~c!, and 2~e!, the mean pattern is nonzer
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throughout the domain, which holds also for the other 1
UPOs. Figures 2~b! and 2~d! indicate more clearly the local
ization of the dynamics, which is evidently uncorrelated w
the mean pattern. The variance decreases three to five o
of magnitude outside the regions of substantial variation.

Using the explicit knowledge of the space-time evoluti
of our computed 127 distinct UPOs Eq.~1!, we explored to
what extent important quantities such as a mean spatial
tern and a fractal dimension can be approximated in term
UPOs. Time-averaged patterns of spatiotemporal chaos h
been recently found experimentally and are not yet und
stood@17#. If the dynamics was hyperbolic and ergodic, a
if the UPOs could be ordered by symbolic length, then
trace formula could be used to approximate averages@1#.
Empirically, no such ordering could be found rendering t
trace formula inapplicable~see below!.

Because of our inability to order UPOs by symbo
length, we developed an escape-time weightingw51/((1l)
for the contribution of each UPO in an average, based on
local instability (1l of a UPO, given by the sum over a
positive transverse Lyapunov exponentsl5 log(umu)/T,
wherem is a Floquet multiplier of a UPO of periodT. The
number of positive Lyapunov exponents for each UPO v
ied between 3 and 8 and the largest Lyapunov exponen
the UPOs varied between 0.02 and 0.34. The escape-
weightingw reflects the fraction of time that a chaotic orb
spends in the vicinity of a particular UPO. Using this ne

FIG. 1. Density plots of three representative UPOsu(t,x) of Eq.
~1! in a spatial domain of lengthL550. The horizontal axis is spac
and the vertical axis spans a time interval of 35 time units.~a! A
UPO of period T59.9 with dynamics localized near the righ
boundary;~b! a UPO of periodT510.7 with dynamics localized in
the interior of the interval;~c! a nonlocalized UPO of period
T523.4. The greyscales represent amplitude variations betwe
and23.
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weighting and averaging over theN5127 time-averaged pat
terns of each individual UPOui(t,x) with period Ti we
found rather good agreement@solid curve in Fig. 2~g!# with
the mean patternm(x)5^u(t,x)& obtained by a direct aver
age of the chaotic fieldu(t,x) over 106 time units @dashed
curve in Fig. 2~g!#. The relative error in the infinity norm
between the two averages is 24%, and is substantially b
near the boundaries. The trace formula average without s
bolic ordering of UPOs is unable to reproduce even
qualitative features of the mean pattern. An escape-time
erage of the 127 variance patterns@solid line in Fig. 2~h!#
does not agree as well with the variance pattern~the relative
error is 46%! but there is still a qualitative similarity.

Figure 3 shows how the extent of localization and
stability depends on the periodT. The degree of localization
was defined as the fraction of the interval@0,L# for which the
variancev(x) was smaller than 0.05~the results were no
sensitive to the choice of this cutoff!. Figure 3~a! shows the
localization versus the periodT for all 127 UPOs. Although
there is scatter in the points, we see that shorter pe
UPOs tend to be more strongly localized, that there can
many UPOs of approximately the same period~sayT514!,
and that the UPOs can vary substantially in their loca
zation. In Fig. 3~b!, we summarize the instability of al
127 UPOs as a function of their periodT and find that there

FIG. 2. Time-averaged mean patternsm(x)5^u(t,x)& and vari-
ance patternsv(x)5^(u(t,x)2m(x))2& for the three representativ
UPOs of Fig. 1.~a! and ~b!: for the UPO with dynamics localized
near a boundary.~c! and~d!: For the UPO with dynamics localize
away from boundaries.~e! and ~f!: For the extended UPO.~g! and
~h!: Mean and variance patterns~solid lines! averaged over all 127
distinct UPOs using the escape-time weighting. For comparison
dashed lines give the corresponding mean and variance pat
obtained from an integration of a chaotic solution over 106 time
units.
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is a trend with smaller period UPOs being more unstable
The same instability versus period trend does not hold

the classic low-dimensional Lorenz equations for which
have used the same damped-Newton method to calcu
over 700 UPOs associated with the chaotic attractor.
speculate that the decay in instability of UPOs versus pe
for the KS equation@Fig. 3~b!# is due to the fact that we ar
not able to compute the most unstable high-period UP
Further, without the assumption of a symbolic dynamics a
using the above escape-time weighting in the Lorenz eq
tions, we were able to estimate the fractal dimension to
accuracy close to that obtained by a cycle expansion, giv
further verification of the escape-time weighting.

Using the data in Fig. 3~b!, the fractal dimensionD of the
chaotic attractor was estimated as follows. First, a frac
dimension was associated with each UPO by expressing
Kaplan-Yorke formula @11# in terms of its transverse
Lyapunov exponents; we found dimensions ranging from
to 12 for the 127 UPOs. An escape-time weighting of t
127 dimensions then gave an estimateD59.060.1 for the
fractal dimension of the attractor, a relative error of 2
compared to the Lyapunov fractal dimensionD58.860.1
calculated directly from the Lyapunov exponents of the s
tiotemporal chaotic solution of Eq.~1! @11#. The conver-
gence of the escape time estimate to the Lyapunov dim
sion is statistical in that the error decreases approximatel
1/AN, whereN is the number of UPOs contributing to th
weighted sum. Other previously published weightings of
UPOs were tried@2,5# but were found not to give results a
accurate as our escape-time weighting, with relative err
larger than 10%.

he
rns

FIG. 3. ~a! Localization@fraction of the spatial domain that ha
variancev(x) below 0.05# vs periodT of 127 distinct UPOs calcu-
lated for the KS equation@Eq. ~1!# in an extensively chaotic regime
with system sizeL550. ~b! Degree of instability as measured b
the sum(1l of positive transverse Lyapunov exponents vs t
periodT for all 127 UPOs.
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In conclusion, we have used a damped-Newton algorit
to calculate many UPOs associated with a high-frac
dimension chaotic solution of a PDE in a large spatial d
main, Eq.~1!. An important numerical insight was the use
damping to increase the likelihood of convergence of an o
erwise straightforward Newton method. Damping was es
cially important, since no close recurrences could be fou
even overT5108 time units. The 127 distinct UPOs foun
were also used to predict successfully the qualitative feat
of the time-averaged mean pattern and the variance of
chaotic attractor. We could estimate the fractal dimension
the attractor to be 9.060.1 compared to the actual value
e,
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8.860.1. The UPOs are typically localized in space whi
suggests a new way to think about the dynamically indep
dent subsystems associated with extensive chaos. The l
ization also has important implications for the control
large chaotic systems using distributed sets of con
points.@4#
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